CHAPTRE EIGHT

VECTORS

- A vector is a physical quantity which has both magnitude and direction.
- Example are
 - a. A force of 20N acting North.
 - b. A velocity of 5km/h East.

Types of vectors:

- In general the are two types and these are
 - i. Free vector.
 - ii. Position vector.

Free vector:

- A free vector is a vector which does not pass through any specific position.
- They are usually represented by small letters e.g e.g $\stackrel{a}{\sim} \stackrel{b}{\sim} \stackrel{and}{\sim} \stackrel{c}{\sim}$

Position vector :

This is a vector which passes through the origin or a specified point.

Vector notation:

- A vector may be represented by a line segment as shown next:

A _____B

- This given vector can be represented by \overrightarrow{AB} , $\overrightarrow{AB$

The Triangle law:

According to the triangle law, $\overline{AC} = \overline{AB} + \overline{BC} \implies \overline{AB} = \overline{AC} - \overline{BC}$ and $\overline{BC} = \overline{AC} - \overline{AB}$

The unit vector:

- This is a vector whose magnitude is one in the direction under consideration.
- The unit vector along a vector \vec{a} is written as \hat{a}
- Also the unit vector along a vector \vec{b} is written as \hat{b}
- The unit vector along the vector \overline{BC} is written as \widehat{BC}
- Consider the vector $A \rightarrow B = 1$
- The vector is written as \overrightarrow{AB} and its unit vector is written as \widehat{AB} .

Equal vectors:

- Two vectors are said to be equal if their magnitudes and directions are equal
- Example are $\overline{AB} = 50 km/hE$ and $\overline{CD} = 50 km/hE$.

The negative vector:

- The negative of the vector $\stackrel{a}{\sim}$ is written as -a
- If $\stackrel{-a}{\sim}$ is the negative vector of the vector $\stackrel{a}{\sim}$, then $\stackrel{a}{\sim} + (\stackrel{-a}{\sim}) = \stackrel{o}{\sim}$.
- The vector $\stackrel{-a}{\sim}$ is a vector of the same magnitude as $\stackrel{a}{\sim}$, but it is opposite in direction.
- It must be noted that $\overline{AB} + \overline{BA} =_{\sim}^{O}$.

- Also if $\stackrel{b}{\sim} = \overrightarrow{CD}$, then $\stackrel{-b}{\sim} = \overrightarrow{DC}$, and $\overrightarrow{CD} + \overrightarrow{DC} = \stackrel{O}{\sim}$.
- If we consider a vector \overline{CD} , then its negative vector is \overline{DC} .

The zero vector (null vector):

- This is a vector where magnitude is zero and its direction is undefined.
- It is represented by $\underline{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Notation of the magnitude of a vectors:

- If \overline{AB} is a vector, then its magnitude is written as $|\overline{AB}|$
- Similarly the magnitude of the vector \vec{b} is written as $|\vec{b}|$
- If $\overline{OP} = {a \choose b}$, then its magnitude $= |\overline{OP}| = \sqrt{a^2 + b^2}$

Q1. i. If $OP = \binom{6}{5}$, *f* ind the magnitude of \overline{OP} .

ii. Find \emptyset the angle between \overline{OP} and the x – axis

Soln.

Scalar multiplication of vector:

- If \hat{a} is the scalar and \overline{a} is the vector, then the scalar x the vector = \hat{a}
- When a scalar multiplies a vector, the product is also a vector, and for this reason \overline{a} is also a vector.
- The vector \bigwedge_{\sim}^{a} is parallel to $\stackrel{a}{\sim}$, and is in the same direction as $\stackrel{a}{\sim}$, but has \bigwedge times the magnitude of $\stackrel{a}{\sim}$.
- For example the vectors \vec{a} and $2\vec{a}$ have the same direction. i.e____ $|\vec{a}|$ ____ $|2\vec{a}|$ ____
- But the vectors \vec{a} and and $-2\vec{a}$ are opposite in direction.

-
$$(\vec{a} + \vec{b}) = ^{\vec{a}} + ^{\vec{b}}$$
, e.g $6(^{a}_{\sim} + ^{b}_{\sim}) = 6^{a}_{\sim} + 6^{b}_{\sim}$

- Also $(2+4) \vec{a} = 2\vec{a} + 4\vec{a}$
- Finally ${}^{1}({}^{2}\vec{a}) = {}^{1}{}^{2}\vec{a}$, e.g 3(2 \vec{a}) = 6 \vec{a}

N/B:

- If P(x₁,y₁) is a point in the x y plane, then the position vector of P relative to the origin, O is defined by $\overrightarrow{OP} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$
- Also if A = (0,6), then $\overrightarrow{OA} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$

Q2. Find the numbers m and n such that

 $\mathrm{M}\binom{3}{5} + n\binom{2}{1} = \binom{4}{9}$

Soln.

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9} \Longrightarrow \binom{3m}{5m} + \binom{2n}{n} = \frac{4}{9}$$
$$\implies 3m + 2n = 4 \dots \dots eqn(1).$$

 $5m + n = 9 \dots \dots eqn(2)$

Solve eqns (1) and (2) simultaneously

$$\Rightarrow$$
 $m = 2$ and $n = -1$

Q3. If mp + nq = $\binom{4}{3}$, *find m and n* where m and n are scalar, given that p = $\binom{2}{3}$ and $q = \binom{2}{5}$

Soln.

$$p = \binom{2}{3} \text{ and } q = \binom{2}{5} \text{ but } mp + nq = \binom{4}{3}$$
$$\implies m\binom{2}{3} + n\binom{2}{5} = \binom{4}{3} \Longrightarrow \binom{2m}{3m} + \binom{2n}{5n} = \binom{4}{3}$$
$$\implies 2m + 2n = 4 - (1)$$
$$3m + 5n = 3 - (3)$$

Solve eqns (1) and (2) simultaneously to get the values of m and n.

Q4. If
$$r = \binom{3}{1}$$
 and $s = \binom{-2}{1}$, evaluate $6(r + 25)$
Soln.

Consider 6(r + 2s), solve what is inside the bracket first $\Rightarrow r + 2s = \binom{3}{1} + \binom{-2}{1} = \binom{3}{1} + 2\binom{-4}{2} \Rightarrow r + 2s = \binom{3+\overline{4}}{1+2} = \binom{-1}{3} \Rightarrow 6(r + 2s) = 6\binom{-1}{3} = \binom{-6}{18}$ Q5. If $p = \binom{1}{2}$, $q = \binom{-2}{3}$ and $r = \binom{1}{1}$, find 2p - q + rSoln.

 $2p - q + r = 2\binom{1}{2} - \binom{-2}{3} + \binom{1}{1} = \binom{2}{4} - \binom{-2}{3} + \binom{1}{1} = \binom{2+2+1}{4-3+1} = \binom{5}{2} \Longrightarrow 2p - q + r = \binom{5}{2}.$

Q6. If the vector $\mathbf{p} = \binom{2}{3}$, $q = \binom{2}{5}$ and $r = \frac{1}{2}(q-p)$,

Find the vector r.

Soln.

$$r = \frac{1}{2}(q - p) \implies r = \frac{1}{2}\{\binom{2}{5} - \binom{2}{3}\} \implies r = \frac{1}{2}\binom{2-2}{5-3} = \frac{1}{2}\binom{0}{2} = \binom{\frac{1}{2}(0)}{\frac{1}{2}(2)} = \binom{0}{1} \implies r = \binom{0}{1}$$

N/B: Given the points A and B, then $\overrightarrow{AB} = B - A$.